

Welcome to hetrob’s documentation!

Contents:

	HetRob - Coordination of Heterogeneous Robotic Teams
	Installation

	Basic Usage

	Credits

	Installation
	Stable release

	From sources

	Getting started
	Example scripts

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2020-06-30)

	0.2.0 (2020-10-02)

	0.3.0 (2020-11-23)

	0.4.0 (20202-11-24)

Indices and tables

	Index

	Module Index

	Search Page

HetRob - Coordination of Heterogeneous Robotic Teams

[image: _images/hetrob.svg]
 [https://pypi.python.org/pypi/hetrob][image: Documentation Status]
 [https://hetrob.readthedocs.io/en/latest/?badge=latest]A python package for the optimization of mission plans for heterogeneous, cooperating robotic teams using genetic
algorithms.

	Free software: MIT license

	Documentation: https://hetrob.readthedocs.io.

Installation

The package is best installed using the Python package manager PIP.

$ pip3 install --user hetrob

Basic Usage

For a more detailed description of the usage refer to the Documentation [https://hetrob.readthedocs.io.].

Credits

	Cookiecutter [https://github.com/audreyr/cookiecutter]: A python boilerplate project templating CLI tool

	cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage]: A cookiecutter template, which provides the basic boilerplate for creating the folder
structure of a publishable python package

	deap [https://github.com/DEAP/deap]: Short for “distributed evolutionary algorithms with python”

Installation

Stable release

To install hetrob, run this command in your terminal:

$ pip install hetrob

This is the preferred method to install hetrob, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for hetrob can be downloaded from the Github repo [https://github.com/the16thpythonist/hetrob].

You can either clone the public repository:

$ git clone git://github.com/the16thpythonist/hetrob

Or download the tarball [https://github.com/the16thpythonist/hetrob/tarball/master]:

$ curl -OJL https://github.com/the16thpythonist/hetrob/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Getting started

The best way of getting started with the hetrob documentation is to first read the all the example python modules in
the intended order. After that, the additional chapters of this documentation can be used to potentially read up
on topics which were not mentioned within these examples.

Example scripts

The following listing provides an overview of all the example files, which will serve as a ‘guided tour’ through the
functionality of the hetrob library. Each script contains example code as well as extensive comments which explain,
as well as the additional underlying principles for most of the operations.

This list of examples is sorted in the order in which the information will make the most sense.

	basic_vrp.py [https://github.com/the16thpythonist/hetrob/blob/master/hetrob/examples/basic_vrp.py]. This file contains the most stripped down version of steps, which are required to essentially
solve a vehicle routing problem using a genetic algorithm. The vehicle routing problem which is considered in this
file is one of the easiest imaginable variants, which simply considers some spatially distributed task locations and
a number of available vehicles. There are no additional constraints and every other aspect such as task duration and
vehicle speed are entirely constant and homogeneous. This file will not touch on any of the details, but rather
provide an overview of steps required to operate the library.

	hsvrsp.py [https://github.com/the16thpythonist/hetrob/blob/master/hetrob/examples/hsvrsp.py]. This script contains a more realistic VRP variant abbreviated “HSVRSP”. This variant included additional
constraints such as heterogeneity, cooperation and precedence, which make it much harder to solve. This example still
follows the same overall pattern as the previous one, but goes into a little bit more details for each step. For
example it introduces the possibility of loading problem instances from JSON files, modifying the solution
representations objective function, changing the selection operator and the specifics of solution visualization.

	custom_genotype.py [https://github.com/the16thpythonist/hetrob/blob/master/hetrob/examples/custom_genotype.py]. This script basically uses the same example VRP problem as the first example did. Although this
file introduces how to write a custom genotype representation. This custom genotype can be created by subclassing
the abstract base class AbstractGenotype. It is important for the design of this custom class that it can properly
interface with the Phenotype and Problem classes which will be used in combination with it, but other than that the
newly created Genotype class can simply be plugged into the genetic solution representation and all other parts will
work the same way they did before.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/the16thpythonist/hetrob/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

hetrob could always use more documentation, whether as part of the
official hetrob docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/the16thpythonist/hetrob/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up hetrob for local development.

	Fork the hetrob repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/hetrob.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv hetrob
$ cd hetrob/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 hetrob tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/the16thpythonist/hetrob/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_hetrob

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Jonas Teufel <jonseb1998@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2020-06-30)

	First release on PyPI.

0.2.0 (2020-10-02)

	Added all the stuff from the implementation phase of the bachelor thesis

	
	Documentation
	
	Added very basic information about the optimization of a base VRP with a simple GA

	Added a chapter for advanced topics

	Added a chapter for a command line interface

0.3.0 (2020-11-23)

	Changed the documentation theme to “read the docs”

	Added the “getting started page” to the documentation

	Added the example “basic_vrp.py”

	Added the example “hsvrsp.py”

0.4.0 (20202-11-24)

	Added the example “custom_genotype.py”

Index

Advanced Topics

Controlling algorithm termination criteria

tbd

Command line interface

Using code examples

tbd

Usage

The basic use case of this library is intended to be the solving of problems concerning multi-robot coordination
and vehicle routing. A vehicle routing problem is a combinatorial problem, which is often encountered with physical
distribution process. The problem can be stated like this: There is usually a set of spacially distributed tasks
which have to be processed. Additionally there is a fleet of vehicles, where each vehicle is able to process one such
task at a time. The additional rules are, that every task has to be processed exactly once. This presents a
fundamental optimization process, where the optimal routes of the vehicles between the different tasks has to be
found.

An example for such a problem would be from the delivery industry. Say every task represents a package which has to
be delivered and the vehicles are delivery trucks. A company is now interested to find such a route which minimizes
the total needed time and the costs for truck fuel.

This library is now concerned with the previously described optimization problem. This generally involves the
generation of a solution for a specific problem.

Simple optimization with a genetic algorithm

The following example contains the code to run the optimization of a basic vehicle routing problem instance using a
simple genetic algorithm. The code will be explained in more detail right after.

Before going into the code, here is a short description of which kind of vehicle routing problem will be considered
in this example: It is a very basic homogeneous vehicle routing problem with no additional constraints. There is a set
of tasks which have to be completed. Each of these tasks will be represented as two dimensional coordinates. Thus the
travel distance between two nodes will be symmetrical and equal to the euclidean distance between their coordinates.
Every node will have the same duration to be completed. The travel speed of every vehicle is implicitly assumed to be
one unit of distance per unit of time. A fix amount of vehicles is available to visit the nodes. For this problem the
default objective function of “absolute end time” is assumed. This will be the maximum end time over every last visit
of any vehicle.

The following steps are involved in this example program:

	Every specific problem configuration is represented by a problem object in this library. These objects are created
by using special problem classes. Every problem class has to be child class of hetrob.problem.AbstractProblem. In
this case 2 vehicles are used for the problem and 4 tasks are being defined by their coordinate tuples. Note that the
first coordinate tuple represents the location of the depot, from which all the vehicles start.

	This second step mainly defines the inner workings of the genetic algorithm, which will be used to solve the problem.
The genetic algorithm requires a class of the type hetrob.genetic.solution.AbstractGeneticSolution to work properly.
In this case the function generate_genetic_solution dynamically creates a new class of this type. A genetic
solution consists of two parts: The genotype and the phenotype. Each of those are again represented by classes. The
genotype class is responsable of wrapping the basic representation of an individual solution. This representation of
an individual is an important concept within genetic algorithms. On this genotypic representation, the variation
operators of mutation and crossover are defined. The phenotype class mainly handles the evaluation of the quality of
of a solution. It accepts a genotype representation and decodes all the important features from it. These features
are for example whether the solution is feasible or not, or the float objective value which indicates the quality
of the solution.

	The GeneticOperators class is simply used to wrap the information for a single run of the genetic algorithm. It
needs information about the specific problem instance which is to be solved, as well as the solution class (which
defines the specifics of the actual operators to be used).
The function solve_ga is the one actually executing the algorithm. It obviously needs the genetic operators object.
It wraps information about the problem instance to be solved as well as the operators which actually make up the GA.
Additionally the function accepts hyper parameters, which control the behaviour of the algorithm. In this case this
includes the chances of mutation/crossover to be applied and the population size. The termination condition is
controlled by Termination classes. In this case the algorithm will stop after 100 generations (=iterations of the
evolutionary loop).

	The result of this function will be an object of the type hetrob.result.AlgorithmResult. This object will contain
the final solution as well as some meta information about the execution process. This includes the time, amount of
iterations, final fitness value, log output etc. This object can be converted to a dictionary to view the results.
Note that the library additionally contains functionality for visualizing the actual solution, but this will be
explained with a different topic.

Changing the select operator

One part of the evolutionary loop is the “select” operator. It defines the rules by which the individuals from a
population are selected as parents of the next population.

This operator is not tied to the genotype representation of a

 nav.xhtml

 Table of Contents

 		
 Welcome to hetrob’s documentation!

 		
 HetRob - Coordination of Heterogeneous Robotic Teams

 		
 Installation

 		
 Basic Usage

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Getting started

 		
 Example scripts

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2020-06-30)

 		
 0.2.0 (2020-10-02)

 		
 0.3.0 (2020-11-23)

 		
 0.4.0 (20202-11-24)

_static/minus.png

_static/plus.png

_static/file.png

